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Abstract—It is well known that for decoding low-density
parity-check (LDPC) codes, the attenuated min-sum algorithm
(AMSA) and the offset min-sum algorithm (OMSA) can outper-
form the conventional min-sum algorithm (MSA) at low signal-
to-noise-ratios (SNRs). In this paper, we demonstrate that, for
quantized LDPC decoders, although the MSA achieves better
high SNR performance than the AMSA and OMSA, each of
the MSA, AMSA, and OMSA all suffer from a relatively high
error floor. Therefore, we propose a novel modification of the
MSA for decoding quantized LDPC codes with the aim of
lowering the error floor. Compared to the quantized MSA, the
proposed modification is also helpful at low SNRs, where it
matches the waterfall performance of the quantized AMSA and
OMSA. The new algorithm is designed based on the assumption
that trapping/absorbing sets (or other problematic graphical
objects) are the major cause of the error floor for quantized
LDPC decoders, and it aims to reduce the probability that these
problematic objects lead to decoding errors.

I. INTRODUCTION

Low-density parity-check (LDPC) codes are a class of
linear block codes for which the performance of iterative
message passing (MP) decoding can approach that of much
more complex maximum likelihood (ML) decoding. The min-
sum algorithm (MSA) [1] is a simplified version of the
sum-product algorithm (SPA) [2] that is commonly used for
iterative MP decoding of LDPC codes, where the check node
computation is approximated (and hence significantly easier to
perform) at the cost of some performance loss when compared
to the SPA. The simplification is particularly desirable for
hardware decoder implementations. Moreover, unlike the SPA,
no estimation of the channel signal-to-noise ratio (SNR) is
needed at the receiver for an additive white Gaussian noise
(AWGN) channel.

In [3], two modifications of the MSA, denoted attenuated
MSA (AMSA) and offset MSA (OMSA) were introduced
to account for the error in the approximation and improve
performance. Also, [4] independently introduced the OMSA.
These algorithms reduce the magnitudes of the log-likelihood
ratios (LLRs) computed at the check nodes of the Tanner graph
representation of the parity-check matrix H of an LDPC code.
Since the LLR magnitudes computed at the check nodes for the
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SPA are smaller than or equal to those of the MSA, making the
LLR magnitudes of the check node to variable node messages
in the MSA smaller can achieve better waterfall performance
(closer to the SPA) compared to the conventional MSA.

Practical implementation of LDPC decoders requires a
finite precision (quantized) representation of the LLRs. In [3],
quantized density evolution (DE) was used to find the optimum
attenuation and offset parameters for the AMSA and OMSA,
in the sense that DE calculates the iterative decoding threshold,
which determines the waterfall performance. At high SNRs,
quantization typically causes an early error floor. In [5]–[7],
it was shown that certain objects, called trapping sets, leafless
elementary trapping sets, or absorbing sets, in the Tanner
graph cause the decoding process to get stuck, resulting in
decoding errors at high SNRs. (Hereafter, we refer to the
sub-graphs induced by these sets, as well as similar sets,
as problematic objects.) Following [3], [4], several papers,
e.g., [8]–[10], focused on further improving the waterfall
performance of the MSA. Strategies have also been proposed
to lower the error floor of quantized LDPC decoders, including
quantizer design [9], [11], [12], modifications to iterative
decoding [13]–[16], and post-processing [17]–[20].

In this paper, we propose a new check node update modifi-
cation of quantized MSA that is straightforward to implement
and reduces the error floor when compared to the methods
proposed in [3], [4]. First, we show that the AMSA and
OMSA, with parameters optimized for waterfall performance,
can exhibit worse (higher) error floors than the MSA. We then
introduce a novel modification to the MSA that applies the
strategies from the AMSA and the OMSA selectively, i.e., it
applies attenuation/offset when it would be helpful and does
not apply it otherwise. Assuming that there exist problematic
objects that cause most of the decoding failures in the high
SNR regime, we show that our new MSA modification causes
these objects to become less prone to decoding failures. As a
result, the new algorithm matches the waterfall performance
of the AMSA and OMSA, while improving the error floor. In
addition, no information about the location or structure of the
problematic objects is required.

II. BACKGROUND
Let V = {v1, v2, . . . vn} and C = {c1, c2, . . . , cm}

represent the sets of variable nodes and check nodes, re-
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spectively, of a bipartite Tanner graph representation of an
LDPC parity-check matrix H. Assume that a codeword u =
(u1, u2, . . . , un) is binary phase shift keyed (BPSK) modu-
lated such that each zero is mapped to +1 and each one is
mapped to −1. The modulated signal is transmitted over an
AWGN channel with mean 0 and standard deviation σ. The
received signal is r̃ = 1−2u+n, where n is the channel noise.
We denote the quantized version of r̃ as r = (r1, r2, . . . , rn).

A. The Min-Sum Algorithm and its Modifications
The MSA is an iterative MP algorithm that is simpler to

implement that the SPA. Unlike the SPA, no channel noise
information is needed to calculate the channel LLRs. The SPA
is optimum for codes without cycles, but for finite length codes
and finite precision LLRs, the SPA is not necessarily optimum,
particularly with respect to error floor performance [16]. Let
Vij represent the LLR passed from variable node vi to check
node cj and let Cji represent the LLR passed from cj to vi.
The check nodes that are neighbors to vi are denoted N(vi),
and the variable nodes that are neighbors to cj are denoted
N(cj). To initialize decoding, each variable node vi passes ri
to the check nodes in N(vi), i.e.,

Vij = ri, (1)

where the Vij’s computed throughout the decoding process
are referred to as the variable node LLRs.1 The check node
operation to calculate the LLRs sent from check node cj to
variable node vi is given by

Cji =

 ∏
i′∈N(cj)\i

sign (Vi′j)

 · min
i′∈N(cj)\i

|Vi′j | , (2)

where the Cji’s computed throughout the decoding process
are referred to as the check node LLRs. After each iteration,
the hard decision estimate û is checked to see if it is a valid
codeword, where ûi = 0 iff

ri +
∑

j′∈N(vi)

Cj′i > 0. (3)

If û is a valid codeword, or if the iteration number has reached
Imax, decoding stops. Otherwise, the variable node LLRs are
calculated as

Vij = ri +
∑

j′∈N(vi)\j

Cj′i (4)

and decoding continues using (2).
In [3], two modified versions of the MSA, called attenuated

MSA (AMSA) and offset MSA (OMSA), were introduced to
reduce the waterfall performance loss of the MSA compared
to the SPA. The modified check node computations are given
by

Cji = α

 ∏
i′∈N(cj)\i

sign (Vi′j)

 · min
i′∈N(cj)\i

|Vi′j | , (5)

1Computing an LLR value from the received value requires multiplying by
2/σ2, where σ2 is the channel noise variance. However, this normalization,
which is required for the SPA, is not required for min-sum decoding and its
variants, so we omit it.

E(A) O(A)

A

Fig. 1. The sub-graph G(A) induced by a (4, 2) absorbing set A.

and

Cji =

 ∏
i′∈N(cj)\i

sign (Vi′j)

 ·max{ min
i′∈N(cj)\i

|Vi′j | − β, 0},

(6)

respectively, where α, β > 0 are constants. In both algorithms,
the check node LLR magnitudes are modified to be smaller
than those of MSA, as noted earlier. This reduces the negative
effect of overestimating the LLR magnitudes in the MSA,
whose larger check node LLR magnitudes compared to the
SPA cause additional errors in decoding. In a quantized
decoder, the operations in (1) – (6) have finite precision,
i.e., the values are quantized to a set of numbers ranging
from −`max to `max, with step size ∆, where the resulting
quantizer thresholds are set from −`max + ∆

2 to `max− ∆
2 . The

attenuation and offset parameters α and β in (5) and (6) that
have the best iterative decoding thresholds were found using
quantized density evolution (DE) in [3]. In [4], the effects
of these modifications on unquantized, clipped, and quantized
versions of the MSA for three different codes were studied
using extensive simulations.

B. Trapping Sets and Error Floors

Let A denote a subset of V of cardinality a. Let E(A)
and O(A) represent the subsets of check nodes connected to
variable nodes in A with even and odd degrees, respectively,
where |O(A)| = b. Here A is called an (a, b) trapping set [5].
A is defined to be an (a, b) absorbing set if each variable
node in A is connected to fewer check nodes in O(A) than
E(A) [7]. These sets, along with similar objects such as
leafless elementary trapping sets, are known to cause most
of the decoding errors at high SNRs for LDPC decoders [7].
In Fig. 1, the sub-graph G(A) induced by a (4, 2) absorbing
set A is shown. In the next section, we will explain how
the check node LLRs in (2) can be modified to improve
decoding performance at high SNR, i.e., to lower the error
floor, by considering decoder behavior in the presence of such
problematic objects.

III. THRESHOLD ATTENUATED/OFFSET MSA

A. Motivation and Rationale

As discussed in the previous section, it is known that
applying attenuation or offset when computing the check node
LLRs can typically improve performance in the low SNR
(waterfall) region for quantized decoders. On the other hand,
since high SNR performance is tied to problematic graphical
objects, the AMSA and OMSA do not necessarily achieve a
good error floor. For example, Fig. 2 presents the simulated
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Fig. 2. Simulated performance of an (8000,4000) LDPC code decoded with
the MSA, AMSA, and OMSA. Solid curves represent BER, dashed curves
represent FER.

bit-error-rate (BER) and frame-error-rate (FER) performance
of the (8000,4000) code of [21] (which was used in [3] and [4])
with a 5-bit uniform quantizer, ∆ = 0.15, and `max = 2.25,
decoded using the MSA, AMSA, and OMSA. As shown,
the AMSA and OMSA gain about 0.7dB in the waterfall
compared to the MSA. However, all the algorithms eventually
exhibit an error floor at higher SNRs. In this section, we focus
on improving the high SNR performance of an LDPC code
decoded with the MSA, AMSA, or OMSA, assuming that a
problematic object causes the error floor.

At high SNRs, for a received vector r, decoding is success-
ful most of the time. In the case of unsuccessful decoding,
it is typically a small number of problematic objects that
cause errors - objects containing variable nodes with unreliable
(small magnitude) LLR values [7]. The channel LLRs for the
variable nodes outside the problematic objects are, however,
mostly reliable and have larger magnitudes. In other words,
the outside LLRs are typically initially large (and reliable) and
continue to grow quickly to even larger values (often `max),
while the inside LLRs initially have smaller (often unreliable)
magnitudes, but also grow quickly to larger values. The cause
of errors in iterative decoding is that the unreliable (small
magnitude) LLRs of the problematic objects increase to larger
values during the iterations, but they typically contain at least
one cycle, which does not allow for correction.

To improve the probability of correcting errors occurring in
a problematic object G(A) at high SNR, we note that the LLR
magnitudes sent from a check node cj in E(A) to variable
nodes inside A should grow more slowly (be attenuated) if
cj receives at least one unreliable (small) LLR, so that the
incorrect messages received from the channel in A are not
reinforced. If a check node cj (inside or outside G(A)) only
receives large magnitude LLRs, on the other hand, these can
be helpful for decoding and hence should not be attenuated.
These two factors combined can lead to correct decoding of a
received vector r that would not occur otherwise.

B. A Threshold Attenuated/Offset MSA

In our modified approach, we leverage a relationship ob-
served at high SNRs between the variable node LLR magni-
tudes |Vij | received by check node cj and the likelihood of
the check node cj being inside a problematic object G(A).
Therefore, the problem of locating errors affected by G(A)
is mapped into merely considering the variable node LLR
magnitudes |Vij | received at check node cj , i.e., we rely on
|Vij | to indicate if cj is inside G(A) and potentially causing
decoding failures. At high SNR, the check node LLRs outside
G(A) typically grow faster than the LLRs inside. Therefore,
if a check node cj receives at least one small LLR, i.e.,
mini′∈N(cj) |Vi′j | ≤ τ , where τ is some threshold, it is
likely that cj is inside G(A). Consequently, to improve the
error floor performance, we propose the following check node
computation to replace (2):

Cji =



[ ∏
i′∈N(cj)\i

sign (Vi′j)

]
· min
i′∈N(cj)\i

|Vi′j | ,

if min
i′∈N(cj)

|Vi′j | > τ,

α′

[ ∏
i′∈N(cj)\i

sign (Vi′j)

]
· min
i′∈N(cj)\i

|Vi′j | ,

otherwise,

(7)

where α′ < 1 is an attenuation parameter designed to
reduce the check node LLR magnitudes sent from a check
node cj inside G(A) to the variable nodes of A. We denote
this modified check node update algorithm as the threshold
attenuated MSA (TAMSA). We will see in Sec. IV that, with
a proper choice of parameters, the TAMSA is capable of
correctly decoding some of the problematic objects that cause
errors in the AMSA or MSA.

In (7), we propose using α′ to make the check node LLR
magnitudes smaller when mini′∈N(cj) |Vi′j | ≤ τ . As an
alternative (or together), an offset parameter β′ can be used
to serve the same purpose, where

Cji =



[ ∏
i′∈N(cj)\i

sign (Vi′j)

]
· min
i′∈N(cj)\i

|Vi′j | ,

if min
i′∈N(cj)

|Vi′j | > τ[ ∏
i′∈N(cj)\i

sign (Vi′j)

]
·max{ min

i′∈N(cj)\i
|Vi′j | − β′, 0},

otherwise,
(8)

and β′ > 0 is an offset parameter that reduces the check node
LLR magnitudes. We denote this modified check node update
algorithm as the threshold offset MSA (TOMSA).

Both the TAMSA and TOMSA selectively, or locally,
reduce the magnitudes of the check node LLRs that are likely
to belong to a problematic object without requiring knowledge
of its location or structure. The TAMSA and TOMSA add a
simple threshold test compared to the AMSA and OMSA,
while the attenuation (offset) parameter only needs to be
applied to a few check nodes at high SNR.
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Fig. 3. Simulated performance of an (8000,4000) LDPC code decoded with
the MSA, AMSA, OMSA, TAMSA, and TOMSA. Solid curves represent
BER, dashed curves represent FER.

IV. RESULTS AND DISCUSSION

In this section, we present the simulated performance of the
(8000, 4000) code of [21] (used in [3] and [4]), the progressive
edge growth (PEG) (1008, 504) LDPC code of [21] (used
in [3]), and the (155, 64) Tanner code of [22] with various
decoding algorithms, including the proposed TAMSA and
TOMSA with different parameters, each using a 5-bit uniform
quantizer with ∆ = 0.15 and `max = 2.25.

Fig. 3 shows the BER and FER performance of the
(8000, 4000) code for the MSA, the AMSA with α =
0.8, the OMSA with β = 0.15, the TAMSA with pa-
rameters [α′ = 0.8, τ = 2], and the TOMSA with parameters
[β′ = 0.15, τ = 2].2 We see that, for the chosen parameters,
the TAMSA and TOMSA each have better error floor perfor-
mance than the MSA, AMSA, and OMSA and maintain the
same waterfall performance. (The parameters used here were
chosen after running decoder simulations for various values of
α′, β′, and τ .)

Fig. 4 shows the BER and FER performance of
the (1008, 504) PEG-LDPC code for the quantized
AMSA, OMSA, and TAMSA with three sets of
parameters [α′ = 0.8, τ = 2], [α′ = 0.8, τ = 1.75], and
[α′ = 0.75, τ = 1.75]. We see that best error floors are
achieved with the TAMSA and that the TAMSA with
[α′ = 0.75, τ = 1.75] exhibits more than one order of
magnitude gain compared to the AMSA and OMSA at SNR
= 4dB. However, the waterfall performance is about 0.1dB
worse than the other algorithms with α = α′ = 0.8. Again,
depending on the application, the values of α′ and τ should
be tuned to obtain the most desirable performance.

Fig. 5 shows the BER performance of the (155, 64) Tanner
code with the AMSA for various values of α, the TAMSA for
[α′ = 0.7, τ = 1.5], the MSA, and the unquantized SPA. We
see that there is a notable difference between the unquantized
SPA performance and the quantized MSA variants. However,

2The best values of τ for achieving good waterfall performance are typically
close to `max, since attenuation is beneficial for most of the check nodes at
lower SNRs, which requires the variable node LLRs to be smaller than τ .
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Fig. 4. Simulated performance of the (1008,504) PEG-LDPC code decoded
with the AMSA, OMSA, and TAMSA. Solid curves represent BER, dashed
curves represents FER.

at high SNRs, the TAMSA significantly outperforms both the
AMSA and the MSA and maintains a roughly constant 0.5dB
lag compared to the unquantized SPA performance.

Based on these results, the optimal values of α and β
introduced in [3], [4], obtained using quantized DE, are good
candidates for α′ and β′ in the TAMSA and TOMSA as well.
We found that, when τ is close to `max, values of α′ or β′

with less reduction of LLR magnitudes suffer some waterfall
performance loss compared to the optimal α or β, as also
found in [3], [4]. While values of α′ or β′ with more reduction
of LLR magnitudes also hurt the waterfall performance, this
can in fact be beneficial for the error floor performance, since
they slow down the convergence of the LLRs from check
nodes that don’t satisfy the condition mini′∈N(cj) |Vi′j | > τ
in (7) or (8), thus allowing LLRs from check nodes that do
satisfy (7) or (8) to help “correct” errors. Hence, values of
α′ and β′ with more reduction of LLR magnitudes may be
desirable, depending on the application, e.g., if error floor
performance is critical.

Our results also indicate that the TAMSA and TOMSA
have comparable waterfall performance to the AMSA and
OMSA with parameters α′ = α and β′ = β, respectively,
even though the TAMSA and TOMSA only selectively, rather
than uniformly, offset or attenuate. In the low SNR region,
it is important to reduce the check node LLR magnitudes of
the MSA to obtain good performance. In this region, many of
the channel LLR magnitudes are small, and the corresponding
variable node and check node LLR magnitudes are also small
for the first few iterations of decoding. As a result, it is likely
that the variable node LLR magnitudes received by the check
nodes at low SNR are below the threshold τ . Therefore, in the
early iterations, the threshold condition mini′∈N(cj) |Vi′j | > τ
in (7) or (8) is not satisfied for most check nodes cj and
attenuation/offset is applied, which improves the performance
compared to the MSA. However, in the high SNR region, the
threshold condition is usually satisfied outside a problematic
object G(A) (and attenuation/offset is not applied), while it
is often not satisfied inside G(A) (and attenuation/offset is
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Fig. 5. Simulated performance of the (155, 64) Tanner LDPC code decoded
with the quantized MSA, AMSA, TAMSA, and the unquantized SPA.

applied), which improves the error floor performance. To-
gether, this results in the TAMSA (TOMSA) combining the
best features of the MSA and the AMSA (OMSA).

In Figs. 2-4, we see that the OMSA slightly outperforms the
AMSA at high SNRs. This follows from the fact that, for given
values of `max, α, and β, the LLR magnitudes for the OMSA
grow to larger values compared to the AMSA (quantized value
of `max − β vs. quantized value of α × `max), which helps
the reliable check node LLRs of the OMSA “correct” errors
inside a problematic object G(A). However, in Fig. 3, we see
that the TAMSA has better error floor performance than the
TOMSA. While the check node LLRs that satisfy (7) or (8)
for both the TAMSA and the TOMSA can grow to `max, the
check node LLRs that don’t satisfy (7) or (8) are limited to a
value smaller than τ (quantized value of α′ × τ vs. quantized
value of τ−β′). Consequently, for the parameter values chosen
in our examples, the TAMSA makes the check node LLRs
that are below τ smaller compared to the TOMSA, which
helps “correct” errors by slowing down the check node LLR
convergence.

V. CONCLUSION

In this paper, a modified version of the MSA was proposed
to lower the error floor of quantized LDPC decoders. Based on
the assumption that a problematic object is the dominant cause
of the error floor, the proposed TAMSA (TOMSA) selectively
attenuates (offsets) a check node LLR if the check node
receives any variable node LLR with magnitude below some
threshold τ , while allowing a check node LLR magnitude to
reach the maximum quantizer level if all the variable node
LLRs received by the check node have magnitude greater
than τ . It was shown that this new approach can decode
some received vectors r that become stuck, and thus can-
not be decoded correctly using MSA or AMSA (OMSA).
Simulation results presented for several codes demonstrated
that the TAMSA (TOMSA) combines the advantages of both
the MSA and the AMSA (OMSA) to offer better error floor
performance without sacrificing waterfall performance. Future
work involves applying the TAMSA to techniques designed to
reduce complexity, such as layered decoding [23] and single-
minimum MSA implementations [13].
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